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Abstract

Background Advancements in health monitoring technologies are increasingly relying on
capturing heart signals from video, a method known as remote photoplethysmography
(rPPG). This study aims to enhance the accuracy of rPPG signals using a novel computer
technique.
Methods We developed a machine-learning model to improve the clarity and accuracy of
rPPG signals by comparing them with traditional photoplethysmogram (PPG) signals from
sensors. The model was evaluated across various datasets and under different conditions,
such as rest andmovement. Evaluation metrics, including dynamic time warping (to assess
timing alignment between rPPGandPPG) and correlation coefficients (tomeasure the linear
association between rPPG and PPG), provided a robust framework for validating the
effectiveness of our model in capturing and replicating physiological signals from videos
accurately.
Results Our method showed significant improvements in the accuracy of heart signals
captured from video, as evidenced by dynamic time warping and correlation coefficients.
The model performed exceptionally well, demonstrating its effectiveness in achieving
accuracy comparable to direct-contact heart signal measurements.
Conclusions This study introduces a novel and effective machine-learning approach for
improving the detection of heart signals from video. The results demonstrate the flexibility of
our method across various scenarios and its potential to enhance the accuracy of health
monitoring applications, making it a promising tool for remote healthcare.

Remote photoplethysmography (rPPG) is a non-invasive method for
detecting volumetric variations in bloodusing video cameras1,2. It provides a
promising alternative to contact photoplethysmography (cPPG) methods3

and has been used in various applications, including heart rate monitoring,
stress detection, sleep analysis4, andhypertension5.However, the accuracyof
rPPG signals can be affected by factors such as motion artifacts, changes in
illumination, and skin tone variations6,7. These factors can introduce noise
and distortions into the captured signal, leading to inaccurate

measurements of physiological parameters. For instance, in the dataset LGI-
PPGI, the videos inwhich the subjects talk are recordedoutdoors, impacting
the quality of the rPPG. When comparing factors in rPPG to conventional
cPPG, certain distinctions emerge. While both methods are susceptible to
motion-related artifacts, rPPG faces additional challengesdue to the reliance
on non-contact measurements, making it more sensitive to environmental
changes and subject movement. To avoid these problems, best practices in
PPG signal acquisition and processing are described in ref. 8.
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Plain language summary

This research explores a new way to monitor
health using video,which is less invasive than
traditional methods that require direct skin
contact. We developed a computer program
that improves the accuracy of heart signals
captured from video. This is done by
comparing these video-based signals with
standard clinical signals from physical sen-
sors on the skin. Our findings show that this
new method can match the accuracy of
conventional clinical methods, enhancing the
reliability of non-contact health monitoring.
This advancement could make health mon-
itoring more accessible and comfortable,
offering a potential for doctors to track patient
health remotely, making everyday medical
assessments easier and less intrusive.
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Our goal is to improve the quality of the rPPG signal by constructing it
similarly to thecontactPPGsignal.Thiswill allowformoreaccurate extraction
of the physiological information obtained from rPPG signals, such as pulse
rate variability9. There have been previous attempts to improve physiological
parameters derived from rPPG signals. For example, some studies have
evaluated the performance of restored rPPG signals by comparing heart rate
(HR) andHRvariability (HRV) obtained from rPPGwith a referenceHRand
HRV extracted from cPPG10–13. Other authors have focused on improving
BP14, oxygen saturation measurements15, or fibrillation arrhythmia16.

Most existing studies have focused on computing specific physiological
parameters from remote photoplethysmography (rPPG) signals rather than
capturing the raw signal itself14. However, if a model is trained to obtain an
rPPG signal for a specific parameter such as HR, other information may be
lost. For instance, only the systolic peak is relevant for HR calculation,
resulting in the loss of information about the diastolic peak. In addition, the
morphology of the signal itself can provide valuable information, such as
first and second derivatives, that can be useful for detecting cardiovascular
diseases (CVDs)17. Although some studies have achieved great results cal-
culating HR using rPPG signals, these signals are often not robust and
contain a high amount of noise18. This is because these authors’models have
been trained to improve HR calculation rather than to improve the signal
itself. One study attempted to improve PPG signals by comparing them to
reference PPG signals19, but the study used a private dataset without activity
distinction and evaluated rPPG and contact PPG (cPPG) using Pearson
correlation coefficient and cosine similarity. We improve this by including
three public datasets andmoremetrics useful to compare the rPPGwith the
cPPG, in both time and frequency domains.

In this study, we present a machine learning-based approach to
enhance the construction of remote photoplethysmogram (rPPG) signals
from video cameras. Our model utilizes existing rPPG signals from various
models such as Chrominance (CHROM)-based rPPG20, Local Group
Invariance (LGI)21, Independent Component Analysis (ICA)22, and Plane-
Orthogonal-to-Skin (POS)23 as inputs. The choice of these algorithms was
based on the recommendation of a previous study24. It enhances these by
comparing them with reference PPG signals. This novel method marks a
significant advancement in rPPG signal detection by employing machine
learning techniques, compared to traditional methods that extract features
directly from the video followed by classification25.

Methods
In this section, the methodology used in this study is presented, from the
data processing techniques to the models used to construct the rPPG. A
general visualization of the pipeline is presented in Fig. 1.

Dataset description and ethical compliance
For this study, three public datasets were utilized:

LGI-PPGI: This dataset is published under the CC-BY-4.0 license.
The study was supported by the German Federal Ministry of Education
and Research (BMBF) under the grant agreement VIVID 01∣S15024 and
by CanControls GmbH Aachen21. The LGI-PPGI dataset is a collection
of videos featuring six participants, the sex of five is male and one is
female. The participants were recorded while performing four activities:
Rest, Talk, Gym (exercise on a bicycle ergometer), and Rotation (rota-
tion of the head of the subject at different speeds). The videos were
captured using a Logitech HD C270 webcam with a frame rate of 25 fps,
and cPPG signals were collected using a CMS50E PPG device at a
sampling rate of 60 Hz. The videos were shot in varying lighting con-
ditions, with talking scenes recorded outdoors and other activities taking
place indoors.

PURE: Access to this dataset is granted upon request. It received
support from the Ilmenau University of Technology, the Federal State of
Thuringia, and the European Social Fund (OP 2007-2013) under grant
agreement N501/2009 for the project SERROGA (project number
2011FGR0107)26. The PURE dataset contains videos of 10 participants, of
which eight have the sex male and two female, engaged in various activities
classified as Steady, Talk, Slow Translation (average speed is 7% of the face
height per second), Fast Translation (average speed is 14% of the face height
per second), Small Rotation (average head angle of 20∘), and Medium
Rotation (average head angle of 35∘). The videos were captured using a
640 × 480 pixel eco274CVGE camera by SVS-Vistek GmbH, with a 30 fps
frame rate and a 4.8 mm lens. The cPPG signals were collected using a
CMS50E PPG device at a sampling rate of 60 Hz. The videos were shot in
natural daylight, with the camera positioned at an average distance of 1.1 m
from the participants’ faces.

MR-NIRP indoor: This dataset is openly accessible without any
restrictions. It received funding under the NIH grant 5R01DK113269-0227.
The MR-NIRP indoor video dataset is comprised of videos of eight parti-
cipants, including six participants with sex male and two female, with dif-
ferent skin tones: 1 Asian, 4 Indian, and 3 Caucasian. The participants were
recordedwhile performing Still andMotion activities, with talking and head
movements being part of the latter. The videos were captured using a FLIR
Blackfly BFLY-U3-23S6C-C camera with a resolution of 640 × 640 and a
frame rate of 30 fps. The cPPG signals were collected using a CMS 50D+
finger pulse oximeter at a sampling rate of 60 Hz.

Each dataset includes video recordings of participants engaged in
various activities, alongside a reference cPPG signal recorded using a pulse
oximeter. Table 1 provides detailed characteristics of each dataset.

Fig. 1 | General workflow. From data processing to
comparison of the reference photoplethysmogram
(PPG) with the remote photoplethysmogram
(rPPG) constructed by the model. CV cross-vali-
dation, RGB red, green, and blue channels, ML
machine learning. Colors: the green signal refers to
the rPPG reconstructed by the model, and the black
signal refers to the fingertip PPG.
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Ethical considerations for secondary use
The datasets used in our research are not only publicly available but are also
extensively utilized within the scientific community for various secondary
analyses. All datasets received the requisite ethical approvals and informed
consents, in accordance with the regulations of their respective academic
institutions. This compliance facilitated the publication of the data in aca-
demic papers and its availability online. The responsibility for managing
ethical compliancewashandledby theoriginal data providers.They ensured
that these datasets were made available under terms that permit their use
and redistribution with appropriate acknowledgment.

Given the extensive use of these datasets across multiple studies,
additional IRB approval for secondary analyses of de-identified andpublicly
accessible data is typically not required. This practice alignswith the policies
at ETH Zurich, which do not mandate further IRB approval for the use of
publicly available, anonymized data.

A comprehensive description of each dataset, including its source,
funding agency, and licensing terms, has been provided in the manuscript.
This ensures full transparency and adherence to both ethical and legal
standards.

rPPG extraction from video
Several steps were necessary to extract the rPPG signal from a single video.
First, the regions of interest (RoI)were extracted from the face.We extracted
information from the forehead and cheeks using the pyVHR framework28,
which includes the software MediaPipe for the extraction of RoI from a
human face29. The RoI extracted from every individual were composed of a
total of 30 landmarks. Each landmark is a specific region of the face,
represented by a number that indicates the location of that region. The
landmarks 107, 66, 69, 109, 10, 338, 299, 296, 336, and 9were extracted from
the forehead, the landmarks 118, 119, 100, 126, 209, 49, 129, 203, 205, and50
were extracted from the left cheek, and the landmarks 347, 348, 329, 355,
429, 279, 358, 423, 425, and 280 were extracted from the right cheek. Every
landmark was composed of 30 × 30 pixels, and the average across the red,
green, and blue (RGB) channels was computed for every landmark. The
numbers of the landmarks of each area represent approximately evenly
spaced regions of that area.

After all the landmarks were extracted, the RGB signals of each
landmark were used as input for the algorithms CHROM, LGI-PPGI,
POS, and ICA. These algorithms were chosen because of their effec-
tiveness in separating the color information related to blood flow from
the color information not related to blood flow, as well as their ability to
extract PPG signals from facial videos. CHROM separates the color
information by projecting it onto a set of basis vectors, while LGI-PPGI
uses local gradient information to extract PPG signals. POS uses amulti-
channel blind source separation algorithm to extract signals from dif-
ferent sources, and ICA separates the PPG signals from the other sources
of variation in the video. These methods were chosen based on their
performance in previous studies and their ability to extract high-quality
PPG signals from facial videos20,23.

Data processing
For the data processing, the signals used as rPPG are the outputs of the
algorithms ICA, CHROM, LGI, and POS, and the cPPG signals were

resampled to the same fps as the rPPG. First, the filters detrend and
bandpass were applied to both the rPPG and cPPG signals. Bandpass is a
sixth-order Butterworth with a cutoff frequency of 0.65–4 Hz. The chosen
frequency range was intended to filter out noise in both low and high
frequencies. Next, the rPPG signals were filtered by removing low variance
signals and were segmented into non-overlapping windows of 10 seconds,
followed bymin–max normalization.We applied histogram equalization to
the obtained spatiotemporal maps, showing a general improvement in the
performance of the methods.

Frequency domain
Spectral analysis was performed on both the rPPG and cPPG signals by
applying Welch’s method to each window of the constructed rPPG and
cPPG signals. The highest peak in the frequency domain was selected as the
estimated HR, with alternative methods such as autocorrelation also tested.
However, thesemethods showedminimal absolute differences in beats-per-
minute absolute difference (∣ΔHR∣). Welch’s method was deemed useful as
it allowed for heart rate evaluation in the frequency domain and demon-
strated the predictive capability of each channel’s rPPG signal.

Proposed rPPG construction
The model was trained using data sourced from the PURE dataset. The
input data contains information from 10 participants. Each participant was
captured across6distinct videos, engaging in activities categorizedas Steady,
Talk, Slow Translation, Fast Translation, Small Rotation, and Medium
Rotation. This accounts for a total of 60videos,with an approximate average
duration of 1min. Each video was transformed to RGB signals. Then, every
RGB set of signals representing a video was subdivided into 10-s fragments,
with each fragment serving as a unit for training data. The dataset used to
train the model contains a total of 339 such samples.

Because the duration of each video is 10 seconds and the frame rate
is 30, each sample is represented by three RGB signals composed of 300
time-steps. The RGB signals, serving as training inputs, underwent a
transformation process resulting in the derivation of four distinct signals
through the application of the POS, CHROM, LGI, and ICA methods.
Consequently, each 10-s segment yielded four transformed signals,
which were intended for subsequent utilization as input for the model.
Before being fed to the model, data preprocessing was applied to the
signals. Then, a 5-fold cross-validation (CV) procedure was conducted.
During this procedure, the dataset was partitioned into five subsets, with
a distribution ratio of 80% for training data and 20% for testing data
within each fold.

The model’s architecture was composed of four blocks of LSTM and
dropout, followed by a dense layer. The model architecture is shown in
Fig. 2. To reduce the number of features of the model in each layer, the
number of cells in each block decreases from 90 to 1. The learning rate
scheduler implemented was ReduceLROnPlateau and the optimizer was
Adam30. Finally, the metrics root mean squared error (RMSE) and Pearson
correlation coefficient (r) were set as loss function.

Evaluation of the signals
To evaluate the signals, we applied four criteria: Dynamic Time Warping
(DTW), Pearson’s r correlation coefficient, RMSE, and ∣ΔHR∣. We

Table 1 | Description of the LGI-PPGI, PURE, and indoor MR-NIRP datasets

LGI-PPGI PURE MR-NIRP indoor
Participants 6 10 8

Activities Resting, Talking, exercising on a bicycle erg-
ometer (Gym), and Rotation

Steady, Talking, Slow Translation, Fast Translation, Small
Rotation, and Medium Rotation

Still and Motion

Pulse oximeter (sam-
pling rate)

CMS50E (60 Hz) CMS50E (60 Hz) CMS 50D+ (60 Hz)

Camera (fps) Logitech HD C270 webcam (25 fps) Eco274CVGE (30 fps) FLIR Blackfly BFLY-U3-
23S6C-C (30 fps)
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computed each criterion for every window in each video. We then took the
average of the values of all the windows to obtain the final results. This
helped us to analyze the results of everymodel fromdifferent points of view.

DTW. DTW31 is a useful algorithm for measuring the similarity between
two time series, especially when they have varying speeds and lengths.
The use of DTW is also relevant for this case because the rPPG and its
ground truth may not be aligned sometimes, so metrics that rely on
matching timestamps are less appropriate. The metric was implemented
using the Python package DTAIDistance32.

Pearson’s correlation coefficient (r). The equation below shows how
the r coefficient calculates the strength of the relationship between rPPG
and cPPG.

r ¼
PN

i¼1ðxi � x̂Þðyi � ŷÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 ðxi � x̂Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 ðyi � ŷÞ2
q ð1Þ

In this equation, xi and yi are the values of the rPPG andPPG signals at lag i,
respectively. x̂ and ŷ are their mean values.N is the number of values in the
discrete signals.

RMSE. The equation below shows how RMSE calculates the prediction
error, which is the difference between the ground truth values and the
extracted rPPG signals.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1 xi � yi
� �2

N

s

ð2Þ

In this equation, N is the number of values and xi, yi are the values of the
rPPG and contact PPG signals at lag i, respectively.

∣ΔHR∣. HR was estimated using Welch’s method, which computes the
power spectral density of a signal and finds the highest peak in the fre-
quency domain. The peak was searched within a range of 39–240 beats-
per-minute (BPM), which is the expected range of human BPMs. ∣ΔHR∣
is obtained as the absolute difference between the HR estimated from
rPPG and the HR estimated from cPPG.

Statistical tests
To evaluate themodel’s performance, we applied non-parametric statistical
tests, which have fewer assumptions about the data distribution than

Fig. 3 | Results of the different methods for the
datasets PURE, LGI-PPGI, and MR-NIRP. Box-
plot of the r coefficient and DTW for the different
methods. The p-value of every method against our
model is given above the boxes. The p-values are
obtained by applying the Friedman and post hoc
Nemenyi tests. Taking into account the Bonferroni
correction, the adjusted significance level is 0.05/15
= 0.003 given that there are six groups, and a total of
15 tests were performed per dataset and metric. The
total number of samples is 339 for PURE, 251 for
LGI-PPGI, and 187 for MR-NIRP. The error bar
represents 95% confidence interval. a Results for the
dataset PURE. b Results for the dataset LGI-PPGI.
c Results for the dataset MR-NIRP. r, Pearson’s
correlation coefficient. DTW Dynamic Time
Warping. Colors: the purple, blue, and green box
colors refer to the results of the datasets PURE, LGI-
PPGI, and MR-NIRP, respectively.

Fig. 2 | Architecture of the model. The model
architecture generates a remote photo-
plethysmogram (rPPG) signal from three regions of
interest: the forehead (R1), left cheek (R2), and right
cheek (R3). The average value from each region is
calculated, and these averages are then combined to
produce the overall rPPG signal. The model is
composed of four blocks of LSTM and dropout,
followed by a dense layer. The methods ICA, LGI,
CHROM, and POS were used as input to the model.
rPPG remote photoplethysmogram, RGB red,
green, and blue channels, LSTM long short-term
memory.
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parametric ones. Some comparisons involved small sample sizes, such as
those with a limited number of subjects.

The Friedman Test33 is appropriate for this study because it evaluates
themeans of three ormore groups. Every group is represented by amodel. If
the p-value is significant, the means of the groups are not equal. The
Nemenyi Test34 was used to calculate the difference in the average ranking
values and then to compare the difference with a critical distance (CD). The
general procedure is to apply the Friedmann test to each group and if the p-
value is significant, the means of the groups are not equal. In that case, the
Nemenyi test is performed to compare themethods pairwise. TheNemenyi
test helps to identify whichmethods are similar or different in terms of their
average ranks. The Bonferroni correction was applied for multiple-
comparison correction.

Results
To evaluate the performance of the proposed model, we conduct several
experiments. ThemetricsDTW, r, RMSE, and ∣ΔHR∣ are implemented, and
the evaluation is done across datasets and activities.

Evaluation across datasets
For every dataset, the rPPG obtained from the model is compared to the
rPPG obtained from different algorithms. This is done by comparison
against the reference PPG, as shown in Fig. 3. The other methods used for
comparison are LGI, CHROM, POS, and green-red-green-blue (GRGB)12.
The green channel is also included as a baseline. Only the dataset PURE is
used for training, with a 5-fold CV.

For the metric DTW, the proposed model shows a clear improvement
over the other methods. For this metric, CHROM and POS are the best
alternatives to our model, but our model shows a significant improvement
over POS and CHROM in most cases. Similarly, for r, our model outper-
forms every othermethod for the PURE dataset.However, even though our
model shows the best r for the datasets MR-NIRP and LGI-PPGI, the
difference is not significant when compared to other models such as
CHROMorPOS.This is because ourmodelwas trainedonlywithdata from
PURE; however, we can see that it still outperforms the other models in
terms of DTW. The results for every metric are shown in Supplementary
Table 1, and the p-values are shown in Supplementary Table 2.

Evaluation across activities
The next experiment involves a comparison of performance across activ-
ities. The activities are Rest, Talk, Rotation, Gym, and Translation. Rotation
takes into account the activity Rotation from LGI-PPGI and the activities
Small and Medium Rotation from PURE. Talk includes the activity Talk
from LGI-PPGI, PURE, and Motion from MR-NIRP (during the activity
Motion, the subjects talk). Lastly, Translation includes the activities Small
and Medium Translation from PURE and Gym from LGI-PPGI.

As shown in Fig. 4, the same pattern is repeated in the results for the
metrics. For DTW, our model always demonstrates the best performance,
for every activity.Thebest performanceoccurs in activitieswhere the subject
is in a steady position, as well as in activities with different types of move-
ment. This indicates that our model improves the quality of the signal in
several scenarios. In the case of the r coefficient, ourmodel is always the best

Fig. 4 | Results of the different methods for the
across activities. Boxplot of the r coefficient and
DTWfor the differentmethods. The p-value of every
method against our model is given above the boxes.
The p-values are obtained by applying the Friedman
and post hocNemenyi tests. Taking into account the
Bonferroni correction, the adjusted significance
level is 0.003. The total number of samples is 339 for
PURE, 251 for LGI-PPGI, and 187 for MR-NIRP.
The error bar represents 95% confidence interval.
Figures a–e show the results for the activities Rest,
Talk, Translation, Rotation, and Gym. r, Pearson’s
correlation coefficient. DTW Dynamic Time
Warping.
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performing, except in the case of Gym, where POS outperforms ourmodel.
The performance improvement is clearer in termsofDTW,whereCHROM
is the best alternative; this is in contrast with r, where POS is the best
alternative. These differences are the reason why comparing different
metrics is important. Information about RMSE is included in Supplemen-
tary Table 3, and the p-values in Supplementary Table 4. The RMSE results
are similar to those of DTW: on average the results are better for CHROM,
butnot significantly.TheRMSEof ourmodel is higher inMR-NIRPbecause
in some cases the signals were not aligned, but themorphology is still better
than in the other models, as confirmed by DTW.

Evaluation in the frequency domain
The performance in the frequency domain is only significant when com-
pared to the green channel. Nevertheless, in the case of PURE, the perfor-
mance of our model is better on average than the rest of the models, with a
∣ΔHR∣ of 0.52. For LGI-PPGI, the best results are for POS and our model,
with a non-significant difference. In that case, the ∣ΔHR∣ of POS is 5.07 and
the ∣ΔHR∣ of our model is 6.15, which is non-significant, but the difference
with the baseline method GREEN is very high, having GREEN a ∣ΔHR∣ of
16.09. For theMR-NIRPdataset, ourmodel performs the best, with a ∣ΔHR∣
of 7.45. All the results are shown in SupplementaryTable 1, and the p-values
are shown in Supplementary Table 2.

Overall performance
In order to understand why our model performs well, even for MR-NIRP,
where the RMSE of our model is higher than the rest of the models (Sup-
plementaryTable 1), it is important to look at themorphology of the signals.
In Fig. 5, a comparison between our model and POS is shown for different
caseswithpoor andacceptable results in themetrics. Even though theRMSE
of our model is higher in MR-NIRP, we can see that the signal predicted is
more robust and less noisy. This is in agreementwith the results obtained for
the metrics DTW and r. The RMSE is higher because the signals are not
aligned, leading to an underestimation of the performance of our model.
This iswhywe also includedDTWas ametric, given that it helps by aligning
these sequences optimally before comparing them, allowing for a fair

comparison even if there are shifts or stretches in the timing of eventswithin
the sequences.

Discussion
Our purpose was to create a model that could improve the quality and
robustness of the rPPG signal. Previous studies have mostly focused on
improving one physiological parameter derived from the rPPG (e.g., HR or
SpO2). By improving the quality of only one physiological parameter,
information from the rPPG signal can be lost. Due to this concern, we
decided to construct an rPPG signal bymaking it as similar as possible to the
reference PPG.To achieve this, in contrast to other studies, we implemented
RMSE, DTW, and r as performance metrics. In most studies18,35,36, these
metrics are calculated from predicted HR and ground truth HR, but these
studies do not take into account themorphology of the rPPG, only themost
important frequency. Using our evaluation metrics, we are able to take into
account the morphology of the wave, that is, all the frequency spectrum
rather than a particular frequency.

Through the gathered information and results shown, our model
outperforms the othermethods inmost of the settings.When it comes to the
performance across activities, our model had the best performance for the
six activities and bothmetricsDTWand r, with the exemption of the activity
Gym for the metric r, where POS is the best model. In the analysis of
performance across datasets, our model shows the lowest DTW for every
dataset. It also outperforms other methods for the metrics r and RMSE,
except for the MR-NIRP dataset, where the advantage is not always sig-
nificant. It is important to take a closer look at the results, given thatDTW is
more informative than RMSE in this case. For RMSE, the distance between
each point of two signals is measured, as opposed to DTW, where the speed
of the signals is also taken into account. For this study, there aremany cases
in the predictions of our model where the speed of the signals is slightly
different, but the morphology is still similar and informative. The dis-
agreementbetween the results forDTWandRMSE in theMR-NIRPdataset
reflects this, i.e., the morphology of the predicted rPPG signal is acceptable
(low DTW), even though is not well aligned with the cPPG (high RMSE).
One potential resolution could involve signal alignment through techniques

Fig. 5 | Photoplethysmogramand remote photoplethysmogramextracts from the
datasets PURE, LGI-PPGI, and MR-NIRP. Comparison of our model (blue line)
andPOS (purple line) against the reference cPPG (black dashed line). aExamples are
shown where values of the metrics DTW and r are acceptable, for the activity Rest.
b Extracts from the activity Talk are shown, where the noise is higher in both the

rPPG and cPPG signals. r, Pearson’s correlation coefficient. DTW Dynamic Time
Warping, PPG photoplethysmogram. Colors: purple refers to the signal from the
model POS, blue to the signal from our model, and black (dashed lines) to the
referencce PPG.
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like cross-correlation, followed by RMSE calculation. This alignment pro-
cedure could alleviate the current inconsistency and provide amore unified
perspective on signal evaluation. Further exploration and validation of this
alignment strategy could shed light on its effectiveness in resolving the
observed disagreement between DTW and RMSE. Taking a closer look at
the signal, it is apparent that the best alternatives to our model, POS and
CHROM, have high variability and a great amount of noise, especially in
activities such as Gym or Talk. Furthermore, the prediction of the HR of
POS and CHROM is worse than our model, especially in the cases of the
datasets PURE andMR-NIRP. In the case of the signal given by our model,
the robustness ismuchbetter, and even though theremight be a slight offset,
our model is much closer to the reference PPG in terms of morphology.

In terms of activities, ourmodel has shown great robustness to external
noise and movements of the subject. While it outperforms the rest of the
methods in simple activities such as resting, the results are still consistent
even with more complex activities, such as Rotation and Talk, where the
subjectmoves themost.Wehavedemonstrated that ourmodel achievesan r
coefficient up to 0.84 and 0.77 in Translation and Rotation, respectively,
which means that our model is able to achieve the best results in many
different activities for all three datasets. When it comes to the frequency
domain, our model obtained the best results in terms of ∣ΔHR∣ for the
dataset PURE and MR-NIRP. We can see, especially in PURE, how our
model can achieve such a similarity between rPPGandcPPG,with an ∣ΔHR∣
of 0.52. For all the activities, the twobestmodelswere POS and ourmodel in
all the cases.

When contrasting the outcomes of this study with those of others, we
find different scenarios. In some studies, the goal was to improve the rPPG
wave signal; for example, in ref. 19, the authorsusedanMLmodel composed
of dense layers to restore the rPPG signal. However, the authors did this for
only one dataset composed of five subjects, whereas we did it for a dataset
composed of 10 subjects and also tested it in two out-of-distribution data-
sets, proving improvement in performance in unseen data obtained in
different conditions. Additionally, we took into account the distinction
between activities and analyzed this distinction, as well as the HR. Another
study18 also trainedamodelwithPUREandobtained an r coefficient of 0.83,
the same as in our study. However, the metrics mean absolute error and
RMSE that they implementedcouldnot be compared toours, because in our
case thewindowsof the signals arenormalized. In that study, the researchers
performeda cross-dataset estimationwith anotherdataset, but did not show
the results for the r coefficient. In our study, we performed a further analysis
by including two more datasets that the model had not seen, and also
evaluated the absolute difference in HR estimation between the rPPG and
the reference cPPG.

While most previous studies35,37 have focused on HR, as discussed
above, when a model is created only to detect HR, information about other
frequencies and features of thewave is lost, such as thediastolic peak. For the
PURE dataset, the results of ETA-rPPG35 in HR estimation are 0.34 ∣ΔHR∣,
which is a better result than ours (0.52). For Siamese-rPPG18, the ∣ΔHR∣ is
0.51, forDeepPhys38 0.83, and forHR-CNN39 1.84.Nonetheless,we consider
it important to mention that our model did not have as a loss function any
objective related to HR estimation. Our study shows a model that is able to
detect HR, but also potentially other physiological parameters.

As futurework,we believe the next steps to follow are the assessment of
other physiological parameters, such as beat-to-beat HR assessment and
oxygen saturation. This could be useful to identify which physiological
parameters can be reliably estimated by themodel. Another focal point is to
estimate the robustness of the signal produced by the model in different
conditions, like the lighting settings or the recording device.

Conclusion
The results of our proposed model are promising in comparison with the
best-performing traditional methods, including POS, LGI, and CHROM
and warrant more research. This is confirmed by the metrics DTW, r, and
∣ΔHR∣. We train a model with data only from PURE, and test it on PURE,
LGI-PPGI, andMR-NIRP.While the outcome is favorable to ourmodel for

thedatasetPURE, it is also favorable for theother datasets thatwerenot used
in the training. The rPPG estimated from our model is more robust and
reliable than other methods for activities where there is more movement of
the subjects or the recording is made outdoors. We have successfully
developed a method that can construct an rPPG signal that resembles the
PPG signal from the fingertip. This offers a contact-free alternative with
many future applications, such as Health Monitoring and Telemedicine,
and Driver Monitoring and Biometric Authentication.

Data availability
The PURE26 dataset is available at https://www.tu-ilmenau.de/universitaet/
fakultaeten/fakultaet-informatik-und-automatisierung/profil/institute-
und-fachgebiete/institut-fuer-technische-informatik-und-
ingenieurinformatik/fachgebiet-neuroinformatik-und-kognitive-robotik/
data-sets-code/pulse-rate-detection-dataset-pure. The LGI-PPGI21 dataset
is available at https://github.com/partofthestars/LGI-PPGI-DB. The MR-
NIRP27 dataset is available at https://computationalimaging.rice.edu/mr-
nirp-dataset/. The framework pyVHR can be downloaded from https://
github.com/phuselab/pyVHR. The source data, obtained in the experi-
ments, is available in the supplementary information.

Code availability
The code described in this manuscript is publicly accessible on GitHub at
https://github.com/rodrigo-castellano/ML_based_rPPG_construction. In
addition, the specific version of the code discussed in the paper has been
archived and is available via a DOI-minting repository, Zenodo40.
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