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BACKGROUND: Cuff-based blood pressure measurement lacks comfort 
and convenience. Here, we examined whether blood pressure can be 
determined in a contactless manner using a novel smartphone-based 
technology called transdermal optical imaging. This technology processes 
imperceptible facial blood flow changes from videos captured with a 
smartphone camera and uses advanced machine learning to determine 
blood pressure from the captured signal.

METHODS: We enrolled 1328 normotensive adults in our study. We used 
an advanced machine learning algorithm to create computational models 
that predict reference systolic, diastolic, and pulse pressure from facial 
blood flow data. We used 70% of our data set to train these models and 
15% of our data set to test them. The remaining 15% of the sample was 
used to validate model performance.

RESULTS: We found that our models predicted blood pressure with 
a measurement bias±SD of 0.39±7.30 mm Hg for systolic pressure, 
−0.20±6.00 mm Hg for diastolic pressure, and 0.52±6.42 mm Hg for pulse 
pressure, respectively.

CONCLUSIONS: Our results in normotensive adults fall within 5±8 
mm Hg of reference measurements. Future work will determine whether 
these models meet the clinically accepted accuracy threshold of 5±8 
mm Hg when tested on a full range of blood pressures according to 
international accuracy standards.
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Clinically significant elevated blood pressure (BP; 
hypertension) afflicts >25% of adults worldwide.1 
Hypertension also constitutes a major modifiable 

risk factor for cardiovascular disease.2 Nonclinic BP 
monitoring in the form of standard automated BP mon-
itors and ambulatory BP monitors is highly recommend-
ed in dealing with this epidemic.3 It provides patients 
and health professionals with a representative picture 
of a patients’ BP throughout the day4,5 and reduces the 
cost and inconvenience associated with clinic visits6,7 in 
the diagnosis and management of hypertension. Nev-
ertheless, nonclinic BP monitoring has not reached its 
full potential because standard automated BP monitors 
are not convenient to use outside of the home, and 
because ambulatory BP monitors are uncomfortable to 
wear throughout the day.8,9 Therefore, a tool is needed 
that can accurately measure BP comfortably and conve-
niently anywhere and anytime.

Smartphones equipped with transdermal optical 
imaging (TOI) technology may meet these require-

ments. TOI is a recently developed variant of remote 
photoplethysmography for imaging blood flow pat-
terns from video of the face10,11 (Figure 1). Video-based 
photoplethysmography capitalizes on the following 
facts. First, because of the translucent nature of facial 
epidermis, ambient light can penetrate the epidermis 
and reach the tissue below, with some of it reflected 
back out of the skin.12 Second, the digital optical sen-
sors in smartphones are highly sensitive and thus can 
capture re-emitted light and its small attenuations.13 
Third, the quantity of hemoglobin protein in the blood 
and melanin pigment in the skin determines the color 
of light that is reflected back out of the skin. Each has a 
different color signature, so it is possible to separate re-
emitted light containing mostly hemoglobin informa-
tion from light containing melanin information based 
on the differential absorbance characteristics of these 2 
light-absorbing proteins.12

TOI technology uses several state-of-the-art techniques 
in photoplethysmography14 with respect to extraction of 
raw signal (eg, region of interest tracking, multiple raw 
signals, 3 color channels) and estimation of plethysmo-
graphic signal (eg, bandpass filtering). However, unlike 
any other video-based technology, TOI separates each 
video image into multiple layers called bitplanes15 in each 
of the 3 color channels. Then, using a machine learning-
based algorithm developed using blood flow data col-
lected concurrently from an Federal Drug Administration 
(FDA) cleared BP measurement system (Methods in the 
Data Supplement), TOI extracts hemoglobin-rich signals 
and discards melanin-rich signals from each image of the 
video sequence. Next, the hemoglobin signals from all 
bitplanes of each frame of the video are recombined to 
produce an image representing a map of hemoglobin 
concentration across the face. By linking all the images 
together in their original sequence, it produces a video of 
hemoglobin concentration changes representing facial 
blood flow oscillations. This unique methodology pro-
duces a robust signal with minimal noise and minimal 
susceptibility to variations in skin tone.

In this study, we tested the hypothesis that informa-
tion contained within these facial blood flow oscilla-
tions can indicate systolic, diastolic, and pulse BPs. This 
hypothesis is based on the following 3 existing sets of 
evidence. First, TOI already detects heart rate with accu-
racy equal to an ECG11 and heart rate variability with 
comparable accuracy. This demonstrates that blood 
flow changes revealed by TOI technology correspond 
with the systemic cardiovascular changes engendered 
by the pulsating heart. Second, studies using photople-
thysmography have shown that hemoglobin changes 
in the fingers contain important information about 
arterial pressures in the form of photoplethysmography 
waves.13,16,17 While the information obtained from finger 
photoplethysmography is relatively homogeneous, TOI 
of the face is able to obtain such information from mul-

CLINICAL PERSPECTIVE

Cardiovascular disease is a leading cause of death 
and disability, and elevated blood pressure is a 
leading contributor to disease risk. Screening for, 
diagnosing, and following the response to therapy 
for hypertension are constrained by current mea-
surement methods that are subject to variability 
because of a wide variety of potential measure-
ment conditions over the course of one’s daily 
activities. Traditional brachial artery blood pressure 
measurement devices are inconvenient, uncom-
fortable, and require special equipment because 
of their reliance on inflatable cuff-based technol-
ogy. This study reports on a new technology called 
transdermal optical imaging that measures blood 
pressure continuously and without contact from 
video of a person’s face. In this initial study on nor-
motensive subjects, we show that this technology 
exhibits comparable accuracy to traditional auto-
mated blood pressure monitors. However, trans-
dermal optical imaging technology implemented 
on a smartphone would improve upon traditional 
cuff-based devices by being more convenient and 
more comfortable (eg, cuff-less). This is likely to 
encourage measurements in more places and 
with more regularity than before and provides a 
comprehensive picture of patients’ blood pres-
sure throughout the day, much like an ambulatory 
blood pressure monitor. Such a tool could revolu-
tionize hypertension diagnosis and management 
and begin to address the incredible burden of car-
diovascular disease worldwide.
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tiple locations simultaneously, thus taking into account 
differential microvascular control of the face by sympa-
thetic and parasympathetic vasomotor neurons.18 TOI 
should, therefore, provide richer information about BP 
and thus produce more accurate measures than finger 
photoplethysmography. Third, a recent study combined 
photoplethysmography and a smartphone to deter-
mine brachial systolic, diastolic, and pulse BP accurately 
without calibration by a brachial cuff.13 This technology 
used a finger photoplethysmography sensor to detect 
blood flow as the subject presses their finger against 
the sensor with progressively greater levels of force. A 
finger pressure sensor guided the application of that 
force, and the smartphone used force and blood flow 
information to compute BP oscillometrically. The study 
demonstrates that absolute brachial pressures can be 
accurately estimated using photoplethysmography 
elsewhere on the body and without calibration with a 
brachial cuff. Like photoplethysmography, TOI optically 
captures blood flow data and then uses it to determine 
BP. Furthermore, it does so remotely, using only camera 

hardware that is already ubiquitous on existing smart-
phones without the need for a photoplethysmography 
instrument or pressure sensor.

This proof-of-concept study used a smartphone to 
video-record the faces of subjects while simultane-
ously collecting their systolic and diastolic BP reference 
measurements using an FDA-cleared continuous BP 
monitor. This monitor measures upper arm (brachial 
artery) BP continuously, thus providing an objective and 
continuous characterization of BP changes that occur 
throughout the video recording session. After applying 
TOI data processing algorithms (see methods) to the 
face video, we obtained blood flow signals that track 
transdermal blood oscillations in multiple locations of 
the face frame by frame. Then, we divided the sample 
into a training set (70%), a testing set (15%), and a 
validation set (15%). We used an advanced machine 
learning algorithm to train and test computational 
models to predict reference BP from these signals using 
data from the training and testing sets. The remaining 
validation set was never used in training or testing. This 
independent data set was thus used to evaluate how 
well the trained models would generalize to predict 
systolic, diastolic, and pulse pressures in new subjects 
that they had never seen before. This study recruited 
subjects with normotensive BPs, with the high BP cut-
off defined by Eighth Joint National Committee general 
population criteria.19 Subjects had a systolic pressure 
between 100 and 139 mm Hg and a diastolic pressure 
between 60 and 89 mm Hg. This range was sufficient to 
build computational BP models and determine whether 
TOI technology can be used to measure BP.

MATERIALS AND METHODS
Data and Code Disclosure Statement
Sample data are available from the corresponding author on 
reasonable request. The full data set (including videos) con-
tains personally identifying information from human subjects 
and is not available because of privacy considerations. In gen-
eral, computer code is available from open source software 
libraries as described. Where custom computer code is used, 
its function is clearly described in the methods.

Subjects
Adults (≥18 years) were recruited at the University of Toronto 
(Toronto, Canada) and at the Physical Examination Center 
of the Affiliated Hospital of Hangzhou Normal University 
(Hangzhou, China). The use of human subjects in this study 
was approved by institutional review committees at both 
institutions (University of Toronto Social Sciences, Humanities 
and Education Research Ethics Board, and Affiliated Hospital 
of Hangzhou Normal University Research Ethics Board). We 
collected data from 2348 subjects throughout all seasons of 
the year over 2 years. Then, we selected the 2242 subjects 
with an average reference systolic BP between 100 and 139 
mm Hg and a diastolic pressure between 60 and 89 mm Hg. In 

Image capture

Signal processing (17 regions of interest)

Hemoglobin image extraction 

Feature extraction

Blood pressure prediction model

Blood pressure estimate

A

B

Figure 1. Schematic of transdermal optical imaging. 
A, In transdermal optical imaging, light from the visible spectrum travels 
beneath the skin surface and is re-emitted before being captured by the camera 
sensor. Transdermal optical imaging technology capitalizes on subtle changes 
in skin color from the difference in re-emitted light between hemoglobin and 
melanin chromophores to detect blood flow pulsation in the cardiovascular 
system. B, The process of transdermal optical imaging involves (1) capturing 
video of the face using a conventional camera, (2) extracting spatiotemporal 
images of hemoglobin concentration from the bitplanes of the red, green, 
and blue image channels using advanced machine learning, (3) processing the 
hemoglobin signal from 17 different regions of interest, (4) extracting features 
from these signals, and (5) using a blood pressure prediction model trained 
with advanced machine learning algorithms to indicate blood pressure from 
these signals.
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the sample, we found the number of participants with systolic 
BP between 130 and 139 mm Hg to be substantially under 
represented. To ensure a more even distribution of subjects 
across the full range of systolic BP between 100 and 139 
mm Hg, we randomly downsampled the number of subjects 
with systolic BP between 100 and 129 mm Hg. According to 
best practice in machine learning, downsampling ensures that 
models predict well across the full data range.20 Consequently, 
we had 1328 subjects for creating and validating BP predic-
tion models (for subject characteristics, including reference BP 
distribution, Table I in the Data Supplement).

Data Collection Procedure
Subjects provided informed written consent before com-
mencing the study. Additional consent was obtained for 
publication of the subject photos displayed herein. On 
receiving consent, experimenters measured height and 
weight and administered a prestudy questionnaire to collect 
demographic information. Subjects were then directed to a 
quiet study room and seated at the data collection appara-
tus (Figure 2; full description in the Data Supplement) where 
they could acclimatize for at least 5 minutes. Experimenters 
adjusted chair height so that the subject’s feet were flat on 
the floor. During the acclimatization period, the continu-
ous BP monitor was calibrated for use, as described in the 
Data Supplement. The ambient room temperature varied by 
season and ranged from 14°C to 26°C (mean±SD: 19±4°C; 
Methods in the Data Supplement).

On reaching 5 minutes of acclimatization, the experi-
menter opened the camera application on the iPhone and 
selected video mode and the front camera. They locked the 
camera’s focus and exposure control to the subject’s face by 
placing their finger on the subject’s forehead in the digital 
viewfinder until focus and exposure locked. The experimenter 
then remotely started the video recording, which simultane-
ously inserted a marker into the BP recording to synchronize 
the reference BP recording with the video recording. The 
recording proceeded for exactly 2 minutes, at which time the 

video recording and BP recording was stopped. This corre-
sponded to the end of data collection.

Signal Processing
Our video recordings of the face captured light re-emitted 
by blood hemoglobin (Figure 1A). The amount of light cap-
tured by the camera was, therefore, inversely proportional to 
hemoglobin concentration near the skin surface. It is widely 
acknowledged that this pulsation of light reflects the pulsa-
tion of arteries under the skin.21 However, these changes in 
re-emitted light are essentially imperceptible in conventional 
videos. For this reason, it was necessary to use signal pro-
cessing techniques to extract and amplify cyclical blood pul-
sations within the human facial vasculature.15 See Methods 
in the Data Supplement for signal processing about TOI and 
reference BP signal.

Features Extracted From Subject Data
We extracted 155 unique features from participant data. The 
first 126 of these features were extracted from facial trans-
dermal blood flow signals from each subject’s 17 regions of 
interest. These features fall into the following categories: 
pulse amplitude, heart rate band pulse amplitude, pulse rate, 
pulse rate variability, pulse transit time, pulse shape, and pulse 
energy. The remaining 29 features consisted of meta-features 
that help normalize for different imaging conditions, as well 
as features pertaining to ambient room temperature and sub-
ject physical characteristics (eg, age, weight, and skin tone). 
For details, see Methods and Figure I in the Data Supplement.

Eigenvectors Used for BP Prediction
After extracting these features, we used SPSS (Version 24) to 
conduct principal component analysis22 on extracted features 
to reduce feature dimensions. We used the varimax rotation22 
to produce 30 orthogonal eigenvectors.

Training of BP Prediction Models
These 30 decorrelated eigenvectors were then input into a 
multilayer perceptron machine learning algorithm (SPSS, 
Version 24) to generate models that best predicted: (1) sys-
tolic BP, (2) diastolic BP, and (3) pulse pressure.

We randomly divided the sample into a training set (70%), 
a testing set (15%), and a validation set (15%). We trained 
and tested our multilayer perceptron models with the train-
ing and testing sets. We then validated these models on the 
independent validation set that was not used in training or 
testing. This independent data set was used as an objective 
indicator to evaluate how well the trained models would gen-
eralize to predict systolic, diastolic, and pulse pressures in new 
subjects that they had never seen before. We trained, tested, 
and validated the models with 200 iterations for each type of 
model to generate statistical estimates of model performance 
(see below for information on statistical estimation of model 
performance; see Methods in the Data Supplement for ratio-
nale behind multiple iterations).

For comparison purposes, we also created separate con-
trol models for systolic, diastolic, and pulse pressure using 
only age, height, weight, skin tone, sex, race, and heart rate 

iPhone 

40-60 cm
Automated 

Blood Pressure Monitor 
(Calibration)

CNAP®

Monitor 500/Biopac®

(Continuous Blood 
Pressure Measurement)

Finger Cuff

Light 
Source Light 

Source

Figure 2. Data collection set-up. 
Subjects were seated at a table with their back, elbow, and forearm support-
ed, legs uncrossed, and feet placed flat on the floor. A front-facing uniform 
light source was used to ensure sufficient lighting. An upper-arm calibrating 
cuff was placed on the right arm at the approximate level of heart (right 
atrium) and was used to calibrate the CNAP Monitor 500 continuous finger 
blood pressure reading for brachial blood pressure. A camera (iPhone 6 Plus 
front camera) was mounted in front of the subject to record video simultane-
ously with continuous blood pressure during data collection.
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as predictors. By doing so, we were able to ascertain whether 
our models based all features were able to predict BP above 
and beyond the contribution of demographics features inde-
pendent from video features. The rationale for doing so was 
that the demographic features could be readily obtained 
without using TOI. For the same reason, we added heart rate 
as a predictor in these control models. Note that although 
here we used heart rate measurements based on TOI, such 
measurements could also be readily obtained without TOI (eg, 
palpation, smartwatch, and ECG).

Statistics: Testing Performance of the BP 
Prediction Models
We quantified the accuracy and precision of each of the 200 
iterations of systolic, diastolic, and pulse pressure models as 
a percentage accuracy, a mean bias±SD, as an intraclass cor-
relation, and as a Pearson correlation. These calculations were 
performed on each of the 200 iterations for each type of BP 
model, and the mean and 95% CI was reported for the 200 
iterations of each model. All accuracy statistics were calcu-
lated on the validation set only. For percentage accuracy, we 
took the absolute difference (error) between the predicted BP 
and the reference BP for a given subject and divided it by the 
reference BP of the subject to get a proportion of error. We 
then subtracted this value from 1 to convert this proportion 
error to a proportion accuracy and multiplied it by 100 to 
obtain a percentage accuracy. We then calculated the mean 
accuracy across all subjects to arrive at a percentage accuracy 
for each model. For mean bias and SD, we calculated the 
difference between the reference and predicted pressure for 
each subject for the systolic, diastolic, and pulse pressure pre-
diction models. We then calculated the mean and SD of this 
difference for all subjects in each respective model. Intraclass 
correlation estimates and their 95% CI were based on single 
measure absolute agreement in a 2-way mixed-effects model. 
Pearson correlations and their 95% CIs were also calculated. 
A plot of reference versus predicted pressures was constructed 
using the mean of 200 predicted values for each model to dis-
play predictive ability across the range of reference BPs.

We further determined the degree of information gain 
attained by each predictive model to determine the predictive 
power of each model beyond that of simply predicting the 
mean. Theoretically, the SE of the predictions when the mea-
surement bias is zero will equal the SD of the reference pres-
sures if the mean is predicted every time. A greater reduction 
in the SD of the residual (prediction error) relative to refer-
ence BP SD demonstrates a greater degree of correct predic-
tive ability. To quantify predictive ability, we took the absolute 
difference of these 2 values and divided it by the SD of the 
reference BP. We converted to a percentage by multiplying by 
100. Thus, a greater percentage corresponds to greater infor-
mation gain for that model relative to reference SD.

To assess eigenvector importance in each iteration of 
the systolic, diastolic, and pulse pressure models, we deter-
mined the relative importance of each of the 30 eigenvec-
tors normalized against the most important eigenvector. We 
averaged eigenvector importance across all 200 iterations of 
the model to rank each eigenvector according to its average 
importance for each model. Although eigenvectors represent 
abstract dimensions in our data, to help readers understand 

what these dimensions may represent, we highlighted the 
most representative features of each eigenvector, which had 
the highest values in the rotated component matrix.

RESULTS
Our study tested the hypothesis that TOI accurate-
ly detects BP from video of the face. We tested this 
hypothesis in 2 parts. First, we determined whether 
oscillations in TOI signal reflected oscillations in contin-
uously measured BP. We did this to determine whether 
TOI captures BP on a qualitative level. We then quanti-
tatively assessed our BP prediction models against ref-
erence systolic, diastolic, and pulse BP measurements.

TOI Signal Resembles Reference BP Pulses
We anticipated that TOI signal would reflect hemo-
globin concentration in the face. This signal would, 
therefore, serve as a surrogate for blood volume and 
ultimately BP. To identify regions in the face with robust 
hemoglobin signal, we constructed a spatiotemporal 
map of TOI signal in the face (Figure 3A). This full facial 
map allowed us to examine areas of the face where 
subcutaneous vasculature was either under the control 
of the sympathetic nervous system (eg, lips and nose) 
or the parasympathetic nervous system (eg, forehead, 
chin, and lower jaw)18; we anticipated both could pro-
vide useful information. Using this spatiotemporal map, 
we identified the 17 regions on the face that could pro-
vide robust hemoglobin signals (Figure 3B).

Next, we examined the TOI signal in the 17 regions 
to determine whether it is representative of BP. We 
qualitatively compared this signal with the reference BP 
waveforms from the FDA-cleared continuous BP moni-
tor. As expected, TOI signal displayed periodicity cor-
responding to the reference BP pulses. Furthermore, 
a characteristic feature of the BP pulse—the dichrotic 
notch23—can be distinguished in the TOI signal (see 
Figure 3C for examples). These results, therefore, sug-
gest that TOI methodology can measure facial blood 
flow changes that correspond to systemic cardiovas-
cular activity.

TOI Accurately Determines BPs
As shown in Table 1, all of our computational models 
based on multilayer perceptron are highly accurate in 
terms of predicting the reference BPs of our validation 
cohort. On average, our models predicted systolic BP 
with an accuracy of 94.81%, diastolic BP with an accu-
racy of 95.71%, and pulse pressure with an accuracy of 
95.75%. The average prediction biases±error SDs were 
0.39±7.30 mm Hg for systolic BP, −0.20±6.00 mm Hg 
for diastolic BP, and 0.52±6.42 mm Hg for pulse pres-
sure. These SDs represent information gains of 25.5%, 
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Figure 3. Extracted transdermal optical imaging 
signal, regions of signal extraction, and compari-
son with blood pressure signal.
A, Subject’s face (top) with corresponding visualization 
of hemoglobin signal using transdermal optical imag-
ing technology (bottom). Transdermal optical imaging 
signal intensity is presumed to reflect hemoglobin 
concentration. Circles indicate spikes in hemoglobin 
signal. B, Seventeen regions of interest of varying sizes 
are located on the forehead, nose, cheek, lip, chin, 
and philtrum. C, Simultaneously recorded transdermal 
optical imaging signal from one individual (raw signal 
from green channel; presumed hemoglobin signal in 
the forehead [wide] region of interest) and continuous 
reference blood pressure signal (CNAP Monitor 500) 
exhibit temporally congruent oscillations and occur at 
≈1 per second—characteristic of blood pressure pulse. 
Consent was obtained for use of patient photos.
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12.0%, and 21.8%, respectively. Our findings cor-
responded to average intraclass correlations of 0.60, 
0.37, and 0.56 and average Pearson correlations of 
0.67, 0.47, and 0.63 for systolic, diastolic, and pulse 
pressures, respectively.

Table 2 shows the accuracy and information gain of 
the control models trained on demographic features 
and heart rate only. These systolic, diastolic, and pulse 
pressure models demonstrated information gains of 
8.8%, 8.8%, and 11.1% versus the reference standard, 
respectively. As shown by the 95% CIs for all measures 
(Tables 1 and 2), these results were significantly lower 
than the results obtained from the full models.

Figure 4 shows the scatter plots of reference versus 
predicted pressures as well as the line of identity. At 
low reference pressures predicted pressures tend to fall 
above the line of identity and at high reference pres-
sures predicted pressures tend to fall below the line of 
identity. Thus, there is some degree of overprediction at 
low reference pressures and some degree of underpre-
diction at high reference pressures.

Eigenvector and Feature Importance in 
Predicting BPs
The relative importance of each eigenvector in predict-
ing systolic, diastolic, and pulse pressure is provided in 
Tables II, III, and IV in the Data Supplement, respectively. 
The majority of predictive power in all 3 models came 
from eigenvectors representing blood flow features. 
Pulse rate features were not a major contributor to any 
eigenvector. With respect to subject physical character-
istics in the meta feature category, it should be noted 
that neither age, sex, skin tone, or room temperature 

had any appreciable influence on any eigenvector and 
thus were not considered significant determinants of 
BP prediction. Height and weight were top features of 
eigenvector 15.

In a feature-specific analysis outside of eigenvec-
tors, we found that age, sex, height, weight, heart 
rate, and skin tone did not significantly correlate with 
prediction accuracy in systolic, diastolic, or pulse pres-
sure models (Ps>0.05).

DISCUSSION
This study tested the hypothesis that TOI technology 
can extract blood flow patterns from the face and then 
use them to accurately predict BP. Our results support 
this hypothesis. We observed that TOI signal obtained 
in the face very closely corresponds to BP wave oscil-
lations obtained simultaneously in the finger. Further-
more, we demonstrated that systolic and diastolic BPs 
predicted from TOI fall within 5±8 mm Hg of reference 
measurements. A bias and SD of 5±8 mm Hg are a key 
accuracy threshold when testing proceeds according to 
the Association for the Advancement of Medical Instru-
mentation (AAMI) standard. The present study thus 
demonstrates that TOI technology can determine BP 
in normotensive participants with an accuracy that is 
comparable to clinical standards. True validation, how-
ever, will require that testing proceeds according to the 
methodology outlined in this standard, which includes 
the testing of non-normotensive participants.

Our findings suggest that blood flow in the facial 
vasculature contains information about BP as measured 
elsewhere in the body by an FDA-cleared continuous 
BP monitor. The way in which TOI extracts and process-

Table 1.  Accuracy and Precision of Full Blood Pressure Prediction Models Containing All Features

Model Accuracy (%)
Error Bias 
(mm Hg) Error SD (mm Hg)

Information Gain 
vs Reference SD 

(%)
Intraclass 

Correlation
Pearson 

Correlation

Systolic blood 
pressure

94.81 (94.79 to 94.83) 0.39 (0.35 to 0.44) 7.30 (7.28 to 7.32) 25.5(25.3 to 25.7) 0.60 (0.60 to 0.60) 0.67 (0.67 to 0.67)

Diastolic blood 
pressure

95.71 (95.69 to 95.73) −0.20 (−0.23 to 
−0.17)

6.00 (5.98 to 6.02) 12.0 (11.7 to 12.3) 0.37 (0.32 to 0.42) 0.47 (0.46 to 0.48)

Pulse pressure 95.76 (95.74 to 95.78) 0.52 (0.46 to 0.58) 6.42 (6.39 to 6.45) 21.8 (21.5 to 22.1) 0.56 (0.55 to 0.57) 0.63 (0.63 to 0.63)

Mean accuracy and precision with 95% CI of 200 systolic, diastolic, and pulse pressure prediction models (N=202). Intraclass correlation is 2-way mixed effects 
model showing absolute agreement for single measures.

Table 2.  Accuracy and Precision of Control Prediction Models Based on Demographics and Heart Rate Only

Model Accuracy (%) Error Bias (mm Hg)
Error SD 
(mm Hg)

Information Gain 
vs Reference SD 

(%)
Intraclass 

Correlation Pearson Correlation

Systolic blood pressure 93.64 (93.63–93.65) −0.5 (−0.6 to −0.5) 8.9 (8.9 to 8.9) 8.8 (8.8 to 8.8) 0.34 (0.34 to 0.34) 0.42 (0.42 to 0.42)

Diastolic blood pressure 95.45 (95.44–95.46) −0.4 (−0.4 to −0.4) 6.2 (6.2 to 6.2) 8.8 (8.6 to 9.0) 0.31 (0.25 to 0.37) 0.41 (0.40 to 0.42)

Pulse pressure 95.01 (95.00–95.02) 0.0 (0.0 to 0.1) 7.3 (7.3 to 7.3) 11.1 (10.8 to 11.4) 0.41 (0.41 to 0.41) 0.46 (0.46 to 0.47)

Demographics features consisted of age, height, weight, skin tone, sex, and race. Mean accuracy and precision with 95% CI of 200 systolic, diastolic, and pulse 
pressure prediction models (N=202). Intraclass correlation is 2-way mixed effects model showing absolute agreement for single measures.
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es this information allows for accurate predictions of 
systolic, diastolic, and pulse BP. These models exhibit 
significant predictive ability over and above simply pre-
dicting the mean. Furthermore, our findings suggest 
that blood flow patterns from different parts of the 
body exhibit robust relationships with one another. Just 
like finger BP is highly related to upper arm BP (as in the 
case of the continuous BP monitor), blood flow pat-
terns from the face are highly related to upper arm BP.

Our results also show that systolic, diastolic, and pulse 
pressure control models trained on demographics and 
heart rate alone show some degree of predictive abil-
ity. However, these models were significantly inferior to 
the corresponding full models trained on all facial video 
features in addition to demographics and heart rate. For 
example, the full models based on both facial video and 
demographics features had almost 3 times the informa-
tion gain in the systolic model, twice the information 
gain in the pulse pressure model, and a third more infor-
mation gain the diastolic model than the control models 
trained on demographics and heart rate alone. Thus, the 

facial video features are highly important for BP predic-
tion overall and demographics plus heart rate features 
are insufficient for obtaining a high level of information 
gain. However, for developing a BP prediction model, 
one must use as many BP-predictive features as possible 
to maximize prediction accuracy and information gain.

Limitations
Although the present study showed that TOI is a robust 
method for determining patient BP, additional work 
is needed. For example, we only included subjects in 
the normotensive systolic (≥100 to <140 mm Hg) and 
diastolic (≥60 to <90 mm Hg) BP ranges and did not 
include a cohort with hypertensive or hypotensive BPs. 
Thus, a crucial next step is to recruit hypertensive or 
hypotensive subjects with and without having taken any 
medication to test the robustness of the current com-
putational BP models based on normotensive subjects.

A further limitation of the subject base is racial homo-
geneity. The vast majority of subjects used were of East 

Figure 4. Reference vs predicted pressures for systolic, diastolic, and pulse pressure prediction models.  
Scatter plots depicting the reference vs the mean predicted blood pressures (BPs) for systolic, diastolic, and pulse pressure prediction models in subjects within the 
normotensive BP range (systolic BP 100–139 mm Hg; diastolic BP 60–89 mm Hg). The line on each plot represents a line of identity (y=x).
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Asian descent. Nevertheless, our participants displayed 
a reasonable degree of skin tone variation and this fac-
tor did not impact model prediction accuracy. The lack 
of skin tone influence was likely because of the unique 
ability of TOI to remove skin melanin information from 
video signals. However, it should be noted that the cur-
rent sample still lacked a sufficient number of subjects 
with either very dark or very fair skin tones. Future stud-
ies should incorporate a robust mix of participants from 
diverse skin tones and races to ensure that results gen-
eralize to individuals from all races and skin tones.

Also, the present study trained the computational BP 
models against reference BP measures from a continu-
ous BP monitor. Although this monitor was validated 
against the internationally recognized gold standard 
measurements, our models were not. Thus, future mod-
el training and cross-validation must be done using gold 
standard techniques. Such techniques require either 
invasive intra-arterial pressure for continuous measure-
ment or auscultation involving a mercury sphygmoma-
nometer for discrete measurements by 2 independent 
nurses for the measurement of reference BP. Further-
more, this technology should be further tested in the 
intended environmental conditions (ie, dynamic lighting 
conditions, held in the hand). Such conditions would 
fully test the capabilities of the technology, including its 
ability to track the face in the presence of motion and 
compensate for changing lighting conditions.

It should be noted that to demonstrate proof-of-
concept that TOI can measure BP, our study adopted 
the key accuracy criteria required by the Association 
for the AAMI standard as a point of reference. The 
81060–2 standard put forth by the AAMI, however, is 
not for smartphone-based BP monitoring. Instead, it is 
one of several standards governing the validation of 
noninvasive sphygmomanometers for clinical use.24 It 
also forms the basis of the United States Federal Drug 
Administration evaluation criteria for such devices. The 
AAMI standard does not explicitly encompass pulse 
pressure, but we measured it as well to determine the 
degree to which facial blood flow features are suited 
for measuring pulse pressure, and because pulse pres-
sure measurements provide clinical value.25 Importantly, 
the AAMI standard was never designed for assessing 
the validity of BP measurements using smartphones. In 
fact, no such international standards and related proto-
cols currently exist. Thus, future development and wide 
usage of smartphone-based BP monitors call for spe-
cific international standards.

Potential Applications and Other 
Directions of Future Research
Notwithstanding the above-noted limitations, the pres-
ent study demonstrated the potential of TOI technology 
for monitoring BP conveniently. This technology could 

be implemented on any modern smartphone. A video 
of the user’s face could be captured by a smartphone 
application where the resource nonintensive task of 
extracting hemoglobin signal from video would be 
performed. Then, the signal could be transmitted via 
internet to the cloud where the resource-intensive task 
of computing BP could be performed. BP predictions 
could then be returned to the user’s phone. This pro-
cess would reduce the quantity of data transmitted to 
and from the cloud, as well as protect user privacy by 
preventing personally identifiable data from being sent 
to the cloud.

A smartphone application based on TOI technology 
would be more comfortable than existing cuff-based 
devices because it would function remotely through 
video without contact with the user. A software-based 
solution build on TOI technology is convenient because 
it accompanies the user wherever they may be with 
their smartphone, thus allowing for BP measurements 
at more times and places than is possible with a cuff-
based device.

It should be noted that in this study, we focused 
on assessing BP prediction in individuals at rest since 
in the clinic resting measurements are used to diag-
nose hypertension and hypotension. Furthermore, our 
study took place under controlled conditions. However, 
future studies need to explore whether TOI can be used 
to monitor BP in different environments (eg, outdoors, 
in a moving vehicle, under low light). Additionally, it 
needs to be examined whether it can track BP during 
physical activity. Such BP measurement could be useful 
for applications like fitness tracking, exercise science, 
and cardiac stress testing. These are situations where BP 
measurement has traditionally been challenging with 
traditional forms of BP measurement. The field of video 
photoplethysmography has traditionally struggled to 
deal with situations where motion is present. Moment-
to-moment variation in camera angles may also pres-
ent an issue. It has yet to be determined whether TOI 
technology is more robust under these conditions. Fur-
thermore, specifically designed studies are needed to 
examine whether BP prediction models based on rest-
ing measurements can be adapted to predict BP during 
physical activity, or whether special BP prediction mod-
els specifically designed for physical activity are needed.

In summary, we have presented proof-of-concept 
that TOI technology can accurately determine BP. We 
acknowledge that a significant body of work remains to 
be done in developing and validating this technology to 
the AAMI standard or another relevant standard. How-
ever, this technology has shown great promise in this 
initial phase of the validation process, and we think that 
the likelihood of successful validation is high. The real-
ization of this technology would enable the creation of 
convenient and widely available BP measurement tools 
in smartphones. Such tools would have several advan-
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tages over cuff-based BP devices currently on the mar-
ket. The added convenience and availability of these 
tools are likely to promote more frequent BP measure-
ments in more people and thus facilitate the detection 
and management of abnormal BP in the population.
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